
Cellular Transport Review

<u>HYPER</u> tonic means there is a GREATER concentration of solute molecules OUTSIDE the cell than inside.

<u>HYPO</u> tonic means there is a LOWER concentration of solute molecules OUTSIDE the cell than inside.

<u>**ISO</u>** tonic means there is the SAME concentration of solute molecules outside the cell as inside.</u>

1 1 -

Cells shrink

and shrivel

The pressure inside a plant cell caused by water pushing against the cell wall is called ______TURGOR______ pressure.

Cells swell	The SWELLING AND BURSTING of animal cells when water enters is calledC <mark>YTOLYSIS</mark>				
	This happens when a cell is placed in a <u>HYPO</u> tonic solution.				
and burst	Placing plant cells in a HYPOTONIC solution causes				
	the osmotic pressure to 				
	LOW ON WATER				
	of plant cells when water leaves so the cell membrane ne cell wall is calledP <mark>LASMOLYSIS</mark>				
It happens when a	a plant cell is placed intoHYPERtonic solution.				
When water leave	s a plant cell, the osmotic pressure will increasedecrease				

The shrinking of ANIMAL cells that are placed in a HYPERTONIC solution is called ___PLASMOLYSIS____.

Cells stay the same size when placed in an __ISO__tonic solution because the amount of water leaving the cell is the same and the amount of water entering.

* * * * * * * * * * * * * *

<u>MULTIPLE CHOICE</u>: Circle the answer(s) that best completes the sentence.

The substance that dissolves to make a solution is called the _____

- A. diffuser
- B. solvent
- C<mark>. solute</mark>
- D. concentrate

During diffusion molecules tend to move _____

- A. up the concentration gradient
- B. down the concentration gradient
- C. from an area of lower concentration to an area of higher concentration
- D. in a direction that doesn't depend on concentration

When the concentration of a solute is the same throughout a system, the system has reached

- A. maximum concentration
- B. homeostasis
- C. osmotic pressure
- D<mark>. equilibrium</mark>

The diffusion of water across a selectively permeable membrane is called ______.

- A. active transport
- B. facilitated diffusion
- C. osmosis
- D. phagocytosis

Phagocytosis, pinocytosis, and exocytosis are all kinds of ______ transport.

- A. active
- B. passive

Glucose enters cells most rapidly by _____

- A. diffusion
- **B.** facilitated diffusion
- C. ion channels
- D. phagocytosis

Energy for active transport comes from a cell's _____.

- A. Golgi complex
- B. nucleus
- C. mitochondria
- D. lysosomes

_ transport requires energy from ATP to move substances across membranes.

- A. Passive
- <mark>B. Active</mark>

A cell must expend energy to transport substances using
A. diffusion
B. facilitated diffusion
C. ion channels
D. osmosis
E. <mark>endocytosis</mark>
White blood cells engulf, digest, and destroy invading bacteria using
A. Facilitated diffusion
B. pinocytosis
<mark>C. phagocytosis</mark>
D. osmosis
The carrier proteins that help in facilitated diffusion are proteins.
A. peripheral
B. integral
All of the following are kinds of passive transport EXCEPT
A. diffusion
B. facilitated diffusion
C. osmosis
D. phagocytosis
E. ion channels
Endocytosis that brings in small dissolved molecules (solutes) and fluids is called
A. pinocytosis
B. phagocytosis
C. facilitated diffusion
D. osmosis
Golgi bodies use to transport molecules out of cells.
A. ion channels
B. phagocytosis
C. pinocytosis
D. exocytosis
The pressure exerted by water moving during osmosis is called pressure.
A. tonic
B. diffusion

- C. selectively permeable
- D. <mark>osmotic</mark>

Placing an animal cell in a hypotonic solution will cause water to _____

- A. move into the cell
- B. move out of the cell

When molecules move DOWN the concentration gradient it means they are moving from _____

- A. an area of low concentration to an area of higher concentration
- B. an area of high concentration to an area of lower concentration

Gases like oxygen and carbon dioxide move across cell membranes using _____

- A. endocytosis
- B. ion channels
- C. diffusion
- D. facilitated diffusion

* * * * * * * * * * * * * *

Complete the transport terms.

- 1. Active transport requires <u>ENERGY</u> to move molecules across membranes.
- 2. <u>ATP</u> is the molecule that provides the energy for active transport.
- 3. Golgi bodies use <u>EXOCYTOSIS</u> to release molecules outside the cell.

4. <u>DIFFUSION</u>moves oxygen and carbon dioxide molecules from a high concentration to a low concentration across membranes.

- 5. The cell organelles that burns glucose and provides ATP for active transport are the <u>MITOCHONDRIA</u>,
- 6. Water moves across membranes by <u>OSMOSIS</u>.
- 7. A small membrane sac used to transport substances during exocytosis & endocytosis
 = <u>VESICLE</u>
- 8. Kind of endocytosis that takes in small dissolved molecules (solutes) or fluids

= <u>PINOCYTOSIS</u>

9. <u>**PASSIVE</u> transport does NOT REQUIRE energy.</u></u>**

10. During <u>FACILITATED</u> diffusion carrier proteins grab glucose molecules, change shape, and flip to the other side of the membrane, like a revolving door.

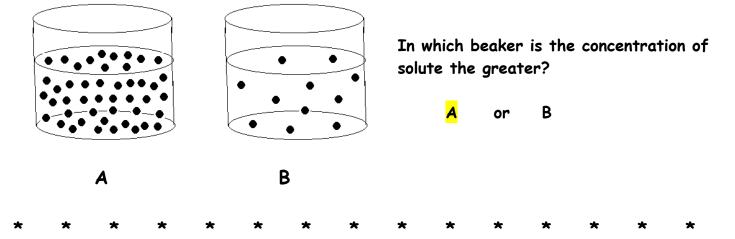
11. A <u>CARRIER</u> protein is an integral membrane protein that helps move molecules across a cell membrane.

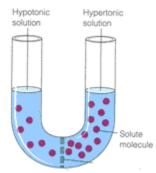
12. A cell placed in an <u>ISOTONIC</u> solution neither swells or shrinks because the concentration of molecules outside the cell is the same as inside.

13. A solution in which there is a HIGHER concentration of molecules OUTSIDE the cell than inside = _HYPERTONIC.

14. A CONCENTRATION <u>GRADIENT</u> forms whenever there is a difference in concentration between one place and another.

15.Pinocytosis, phagocytosis, and Na⁺-K⁺ pumps are all kinds of <u>ACTIVE</u> transport because they use energy to move substances across membranes.


- 16. A solution in which the concentration of molecules outside the cell is LOWER than inside = <u>HYPOTONIC</u>.
- 17. A <u>SODIUM-POTASSIUM PUMP</u> uses ATP to move three Na⁺ ions out of a cell while it moves two K⁺ ions in.
- 18. Pinocytosis & phagocytosis are both kinds of <u>ENDOCYTOSIS</u>.


- 19. When molecules move from high to low along a concentration gradient we say they are moving "<u>DOWN</u>" the gradient.
- 20. <u>OSMOTIC</u> pressure is caused by water inside a plant cell pushing against the cell wall.
- 21. The shrinking of a plant cell membrane away from the cell wall when placed in a hypertonic solution is called <u>PLASMOLYSIS</u>.

22. White blood cells use <u>PHAGOCYTOSIS</u> to engulf and destroy bacteria that the glycoproteins recognize as "not self".

- 23. The swelling and bursting of animal cells when placed in a hypotonic solution is called <u>CYTOLYSIS</u>.
- 24. Proteins (like carrier proteins) that stick INTO the cell membrane either part way or all the way through are called <u>INTEGRALp</u>roteins.

LOOK AT THE DIAGRAMS. The black dots represent solute molecules dissolved in water

If the solute (dots) in this diagram is unable to pass through the dividing membrane, what will happen?

- A. the water level will rise on the right side of the tube
- B. the water level will rise on the left side of the tube
- C. the water level will stay equal on the two sides

COMPARE/CONTRAST the kinds of transport	Active (ATP) or Passive (KINETIC ENERGY) P	What does it use to help: Membrane proteins? Vesicles? Needs no help (phospholipids)? No help	Example of substance(s) that use this kind of transport in cells O2/CO2
DIFFUSION			
FACILITATED DIFFUSION	Р	Membrane protein	Amino Acids Glucose
OSMOSIS	Ρ	Membrane protein (Aquaporin)	Water
FACILITATED DIFFUSION (ION CHANNELS)	Ρ	Membrane Protein	Cl-, Mg2+
SODIUM-POTASSIUM (NA+ -K ⁺) PUMP (ANIMALS)	A	Membrane Protein	Na+/K+
ENDOCYTOSIS (PHAGOCYTOSIS)	A	Vesicle	Bacteria
ENDOCYTOSIS (PINOCYTOSIS)	A	Vesicle	Sugars and Proteins
EXOCYTOSIS	A	Vesicle	Proteins

Modified from: <u>http://brookings.k12.sd.us/biology/other_units.htm</u>